TECHNICAL REPORT 1

ASHRAE Standard 62.1-2007: Ventilation Compliance

Ann \& Richard Barshinger Life Science \& Philosophy Building
Franklin \& Marshall College
Lancaster, PA

Brian Ault

The Pennsylvania State University
Architectural Engineering
Mechanical Option

Faculty Advisor:
Dr. William Bahnfleth

Table of Contents

Executive Summary 2
ASHRAE 62.1 Section 5 Compliance Summary 3
ASHRAE 62.1 Section 6 - Ventilation Calculations \& Procedures 6
Assumptions Used in Analysis 7
Discussion / Conclusions 8
Analysis 9
Appendices 9
References 10

Executive Summary

The Barshinger Life Science \& Philosophy Building (LS\&P) at Franklin \& Marshall College (F\&M) in Lancaster, PA has been evaluated for compliance with ASHRAE Standard 62.1-2007, Ventilation for Acceptable Indoor Air Quality. The evaluation procedure follows Chapter 6 in the standard and is based on floor area, room/space uses, occupancy, and ventilation system type.

This building is F\&M's new laboratory, office, and classroom facility for the Biology, Psychology, and Philosophy departments and their associated education spaces. It is a 3-story building plus basement. This steel braced-frame structure encompasses 108,000 square feet.

The air distribution system for the main section of the building (floors 1-3) is a VAV system with hydronic reheat coils, fed by two air handlers on the roof (AHU-1 and AHU-2). These two units provide a great deal of outdoor air to the building to compensate for large amounts of exhaust air removed from the lab exhaust hoods. They serve a multitude of occupancy spaces, from faculty offices to anatomy/biology labs. These units are both sized at $50,000 \mathrm{cfm}$ nominal.

The basement is home to the vivarium for animal housing and observation. This area is served by AHU-3, a 100\% Outdoor Air unit located in the basement mechanical room. This unit provides $7,500-15,000 \mathrm{cfm}$ of fresh conditioned air to the spaces $24 / 7$ to keep the animals healthy.

Only AHU-3 is fully compliant with Standard 62.1-2007; the other two units do not provide enough outdoor air to fully and properly ventilate all the served spaces year round. AHU-1 can provide up to $50,000 \mathrm{cfm}$ of outdoor air; $326,000 \mathrm{cfm}$ is needed to properly ventilate the spaces. AHU-2 is not as far out of compliance, only needing to supply $77,800 \mathrm{cfm}$ of outdoor air to meet the standard. Still, it can only provide $50,000 \mathrm{cfm}$ total, so under-ventilation remains a problem for these two units.

Section 5 of the standard covers a plethora of issues regarding air quality and overall system design, and very few issues came up there. One issue was the proximity of a chemical storage area exhaust fan to the OA intake on AHU-1. The required distance between these two is 30 feet, and only 12 feet is provided. Other than this, no major problems exist in the application of section 5 .

ASHRAE 62.1 Section 5 Compliance Study

5.1 - Natural Ventilation

None of the windows in the building are operable, save the greenhouse ($3^{\text {rd }}$ floor South), so the building has no natural ventilation, as intended by designers.

5.2 - Ventilation Distribution

Ventilation air (OA) is designed by 62.1, and analysis shows that these requirements are not fully met, although most spaces technically meet the requirements. Design intent to meet these requirements is shown, but VAV box selection does not allow for full ventilation air flow.

5.3 - Exhaust

The building has enormous exhaust air requirements from the numerous labs. All exhaust fans are located on the roof, and all exhaust ductwork is negatively pressurized, preventing any contamination of indoor air from leaking ductwork.

5.4 - Ventilation Controls

A fully-automated Building Controls System (Automated Logic) is provided to operate all equipment, and is tied to central plant and building controls. Overrides are also provided for testing and emergency situations (environmental threats, chemical spills, etc.). The system is designed to operate as 100% OA if required, and matches the undersized ventilation system design ventilation values.

5.5 - Airstream Surfaces

All ductwork is sheet metal with duct silencers; no duct lining is contained in the building. This prevents moisture entrainment and mold growth. Filter change schedules are specified once every 6-12 (max.) months, and are monitored by differential pressure gauges, alarms provided. Sheet metal surfaces are excepted from the flaking and erosion criteria, and as such, meet that requirement.

5.6 - Outdoor Air Intake

All three exhaust air handlers serving the building, located on the roof, may at some point contain air taken from laboratory fume hoods. This automatically gives a 30 ' minimum distance from those sources from which to take air into the building. The return fans are provided with relief dampers, and that air is driven out of the Air Handlers 11' from the OA intake louvers, and is separated by the exhaust and return ductwork, preventing the two airstreams from mixing. The only dangerous contaminator of the OA stream is an exhaust fan located on the roof dedicated to a chemical storage room on the $3^{\text {rd }}$ floor North. It is merely 12 ' from the nearest point of the OA intake louver, with no separation or barrier. This presents a clear danger if there were ever to be a spill of chemicals in the storage room. Air handler 1 is not fully in compliance with section 5 of Standard 62.1; AHU-2 and AHU-3 are fully compliant with all minimum distances listed in Table 5-1.

All intake louvers are provided with sloped drains and settling areas for rain and snow. These areas are accessible by a 18 "x 60 " door for cleaning and maintenance. Bird screens ($1 / 4$ " wire screen) are provided at the inner edge of louver blades.

5.7 - Local Contaminant Capture

All local exhaust devices (hoods, mortuary tables, etc.) are directly ducted to the exterior through the main exhaust air units. Units in highly contaminated streams are provided with local filters to trap contaminants deemed dangerous by the F\&M maintenance staff.

5.8 - Combustion Air

The only source of combustion exhaust in the building is the summer boiler located in the mechanical room on the roof. This exhaust stack is directed up through a chimney to 8^{\prime} above the sloped architectural roof's peak. It is 42 ' from any the nearest air intake. A 4 square foot louver is provided for more-than-adequate ventilation during operation.

5.9 - Particulate Matter

All three AHUs are provided with filters rated as MERV-8 at the air intake to the AHU. There are no Return Air filters, but all air must pass through the cartridge filters before any conditioning occurs in the supply air stream.

5.10 - Dehumidification

The chilled water coils in each AHU provide all sensible and latent cooling for the building. RH requirements of this standard are limited to 65% maximum. Design standards required a maximum RH in the spaces of 60%, except the aquatics labs. These labs are provided with condensation-rated stainless steel environmental enclosures to prevent rust and bacterial growth. The design accounts for lower-than-required latent cooling, with controls maintaining positive building pressurization at all times throughout the year.

5.11 - Drains

All OA intakes, cooling coils, Air Handling Units, and AHU enclosures contain drains and/or pans for accumulated water. All surfaces have a minimum slope of $1 / 8^{\prime \prime}$ per foot, and drains have traps to prevent airflow through drain lines. The cooling coil pans (2 per AHU) are sized to prevent water spills to the AHU interior floor. Also specified are chemical tabs to prevent bacterial growth in these pans.

5.12 - Finned-Tube Coils and Heat Exchangers

All active sections in the built-up air handlers are separated by more than 24 ", 6 " greater than required by Section 5.

5.13 - Humidification

Water is provided to the steam humidifiers from the domestic cold water supply after filtration through replaceable cartridge filters and water softeners. Ample absorption distance is provided before air exits the air handling units, and additional straight runs of duct are provided for safety.

5.14 - Equipment Access

All equipment requiring access for maintenance, inspection, and cleaning (except main ductwork) is located in the main AHUs. These active sections are separated by greater than 18 " on each side (upstream and downstream) to allow for access. Main ductwork contains access
doors on the downstream side of all fire dampers and other flow-control devices for maintenance and cleaning.

5.15 - Building Envelope / Interior Surfaces

The face brick facade allows some moisture penetration, but a weather barrier (30\# building paper) and 1 " airspace is provided behind this brick to prevent further moisture penetration. Drains and vents are provided at the bottom and top of each section of brick to allow accumulated moisture to escape. All expansion joints are caulked and filled with backer rod to fill gaps and prevent infiltration/exfiltration.

All domestic hot water lines require 1 " minimum insulation for energy savings, and the same insulation was provided on all cold water lines to prevent condensation. All refrigerant suction lines (from environmental chambers throughout the building) are insulated to prevent condensation during operation. All ductwork is insulated both inside and outside the building envelope to control the air supply temperature, preventing condensation outside the ductwork simultaneously.

5.16 - Attached Parking Structures
 Not Applicable - surface parking only at site.

5.17 - Air Classification and Recirculation

Return Air is Class 1 ; it is taken only from office, classroom, and lecture spaces not containing any chemical hazards, offensive odors, or biological agents. This is the only air possible to recirculate in the system. Almost all other air in the building is class 4 air, to be directly exhausted by the exhaust fans. The only process this air passes through is a simple runaround glycol energy recovery coil. The air is directly exhausted through this energy recovery device, never mixed or transferred to be recirculated in the building.

5.18 - Environmental Tobacco Smoke Management

The entire Franklin \& Marshall campus has been designated a smoke-free campus.
Smokers must travel off campus to smoke. All college facilities are ETS-free, and are marked as such. Signage is provided at each building entrance/exit, and in outdoor public gathering areas (such as the garden/patio south of the building). This eliminates all ETS-required ventilation for this building located in the central area of the F\&M campus.

ASHRAE 62.1 Section 6 - Ventilation Calculations \& Procedures

The ventilation rate procedure was used as a basis for calculations as specified in the report requirements for Tech Report 1, and was taken from Standard 62.1-2007 chapter 6 Procedures. The VRP is a prescriptive procedure, and is designed to provide minimum outdoor ventilation air at all times. This was applied to the entire LS\&P Building because of the nature of the systems. All supply ductwork is interconnected, making full building analysis necessary. The applications, formulas, and methods are covered in section 6.2 of Standard 62.1, and are outlined below.

Breathing Zone Outdoor Airflow (V_{bz}):

$$
\begin{equation*}
\mathrm{V}_{\mathrm{bz}}=\left(\mathrm{R}_{\mathrm{p}}\right)\left(\mathrm{P}_{\mathrm{z}}\right)+\left(\mathrm{R}_{\mathrm{a}}\right)\left(\mathrm{A}_{\mathrm{z}}\right) \tag{eq.6-1}
\end{equation*}
$$

where $R_{p}=$ Outdoor Airflow rate per person (taken from Table 6-1)
$\mathrm{P}_{\mathrm{z}}=$ Population of Zone (taken from design values in Table 6-1)
$\mathrm{R}_{\mathrm{a}}=$ Outdoor Airflow rate per square foot (taken from Table 6-1)
$\mathrm{A}_{\mathrm{z}}=$ Zone floor area, square feet

Zone Air Distribution Effectiveness $\left(\mathrm{E}_{\mathrm{z}}\right)$:

All supply diffusers/grilles supply cool air from the ceiling to each zone. From table 6-2:

$$
E_{z}=1.0 \text { for all zones } \quad(\text { Table 6-2) }
$$

Zone Outdoor Airflow (V_{oz}):

$$
\begin{equation*}
V_{o z}=V_{b z} / E_{z}=V_{b z} \tag{eq.6-2}
\end{equation*}
$$

Zone Primary Outdoor Air Fraction $\left(\mathrm{Z}_{\mathrm{p}}\right)$:

$$
\begin{equation*}
\mathrm{Z}_{\mathrm{p}}=\mathrm{V}_{\mathrm{oz}} / \mathrm{V}_{\mathrm{pz}} \tag{eq.6-5}
\end{equation*}
$$

where $V_{p z}=$ Zone Primary Airflow (i.e. maximum airflow from AHU)
Uncorrected Outdoor Air Intake ($\mathrm{V}_{\text {ou }}$):

$$
\begin{equation*}
\mathrm{V}_{\mathrm{ou}}=(\mathrm{D})\left(\Sigma_{\text {all zones }}\left(\mathrm{R}_{\mathrm{p}} * \mathrm{P}_{\mathrm{z}}\right)\right)+\left(\Sigma_{\text {all zones }}\left(\mathrm{R}_{\mathrm{a}} * \mathrm{~A}_{\mathrm{z}}\right)\right) \tag{eq.6-6}
\end{equation*}
$$

Outdoor Air Intake (V_{ot}):

$$
\begin{equation*}
V_{o t}=V_{o u} / E_{v} \tag{eq.6-8}
\end{equation*}
$$

where $E_{v}=$ System Ventilation Efficiency (calculated using Appendix A)
such that $E_{v}=$ minimum $\left(E_{v z}\right)$
where $\mathrm{E}_{\mathrm{vz}}=$ Zone Ventilation Efficiency (calculated using eq. A-1)

$$
\mathrm{E}_{\mathrm{vz}}=1+\mathrm{X}_{\mathrm{s}}-\mathrm{Z}_{\mathrm{d}}
$$

where $X_{s}=$ Average Outdoor Air Fraction $=V_{o u} / V_{p s}$ and $\quad Z_{d}=$ Discharge Outdoor Air Fraction $=V_{o z} / V_{d z}$
where $\mathrm{V}_{\mathrm{dz}}=$ Zone Discharge Airflow $=(\mathrm{VAV}$ systems only $)$ minimum expected primary airflow

Outdoor Air Intake Flow (V_{ot}):

$\mathrm{V}_{\mathrm{ot}}=\Sigma_{\text {all zones }}\left(\mathrm{V}_{\mathrm{oz}}\right)$

Assumptions Used in Analysis

Minimum Ventilation Rates in Breathing Zone

The minimum rates taken from Table 6-1 in Standard 62.1-2007 are based on space classifications. In some instances, these were assumed and taken as a closest-possible-match to the intended use of the space. Most often, the University Laboratories classification was used due to the nature of the labs. Assumptions were made as follows:

- Teaching Labs were considered Classrooms (9+) because of the teaching nature of these rooms. They are not used as chemically active or intensive laboratories.
- Student Lounges were treated as Classrooms (9+) because of the occupant densities shown on floor plans.
- Discussion Areas were considered as Office Spaces; all are ancillary spaces to faculty and staff offices.
- Corridors, Telecom closets, and Electrical closets, ventilated collectively, were treated with the most stringent of the standards as corridor areas.
- Restrooms, kitchen, and other "break-intended" spaces were considered Break Rooms

Included Spaces

All areas of the building were included except for elevator cars, elevator shafts, janitorial closets, fire escape stairwells, and entry/exit vestibules. These areas did not require supply of ventilation air, or only required exhausting, with requirements met across the board for exhaust in required spaces.

Zone Population

All populations were calculated based on the default occupant density values given in Table 6-1, usually being slightly higher than the intended population given on the floor plans.

Supply, Return, and Exhaust Airflows

Airflow rates were taken from the ductwork plans and VAV box schedules considering the maximum and minimum values given.

Diversity

The diversity for the entire building was considered as $\mathrm{D}=1.0$. All classrooms may be occupied at once during any time in the day. There is no limit to total building occupancy to allow for application of population diversity.

Discussion / Conclusions

The table summarizing compliance of the main Air Handling Units is below. Neither of the two main AHUs comply with the 62.1-2007 Standard for two primary reasons. First, spaces served by those units do not individually meet ventilation criteria, and second, the remainder of spaces served by these two units, even excluding the individual under-ventilated spaces, do not meet the standard collectively because of the inefficiencies of ventilation throughout the system, and VAV box minimum flows set far below the minimum airflow required for ventilation for each space.

| | Calculated
 OA | Minimum
 OA | Supply
 Minimum | Supply
 Maximum | $62.1-2007$ compliance |
| :--- | :--- | :--- | :--- | :--- | :--- |$|$| AHU-1 | 326,590 | 15,000 | 20,000 |
| :--- | :--- | :--- | :--- |
| 50,000 | NO | | |
| AHU-2 | 77,880 | 15,000 | 20,000 |
| 50,000 | NO | | |
| AHU-3 | 2,448 | 7,500 | 7,500 |
| 15,000 | YES | | |

AHU-3 $(100 \% \mathrm{OA})$ is compliant. Since there is no re-circulated air, and ventilation rates are exceeded by a factor of nearly 3 , even at minimum flow, the space is adequately ventilated.

One very odd thing about these calculations is that because of the poor performance of the ventilation air distribution system, the required outdoor air at the air handler is greater than the maximum supply airflow possible, especially for AHU-1. What is believed to have caused this is the design engineers assumed that minimum flow would always occur during periods when the building was not occupied. If this is the case, the minimum airflow is more than sufficient to ventilate the building. However, if this minimum flow condition (based purely on the T-stat for that zone) would occur during occupied times, the under-ventilation problem can swing wildly out of control, and many contaminant levels in the spaces can become quite high.

The Aquatics Suites on the $3^{\text {rd }}$ floor and the Lecture Hall on the $1^{\text {st }}$ floor are the critical and most offensive zones for both AHU-1 and AHU-2. Since these areas are greatly underventilated, they were excluded from further calculations, making the AHU-1 critical zone the Neuro Teaching Lab (rm. 245) and AHU-2 the Plant \& Bio Teaching Lab (rm. 370, suite).

One opportunity that this issue presents is that it opens many options for solutions during later sections of the Thesis process. Demand-controlled ventilation, dedicated OA units, and possible re-sizing of the VAV boxes are all possibilities for problem solutions, and those will be discussed after further review in the Thesis Proposal.

Analysis

This section contains all charts for each Air Handling Unit and its ventilated spaces. AHU-1 and AHU-2 are both VAV units with supply and return fans, relief dampers at the return fan, and have the designed capacity to modulate to full outdoor air (100% OA) units if necessary, usually during periods of high exhaust. AHU-3 is a 100% OA unit serving the basement vivarium, and is operated $24 / 7$ to ensure the proper environment for animal housing and observation.

Zones highlighted in pink do not meet 62.1 outright; their VAV box minimum flows are below the design OA values and zone ventilation efficiencies are below zero, and are excluded from further calculations. Grey highlights show the minimum (critical) zone ventilation efficiency. Yellow areas indicate an assumption of 10% leakage at the VAV box, as specified in the schedules as the maximum allowable leakage.

Appendices

Table 1 - AHU - 1 Summary \& Calculations
Table 2 - AHU - 2 Summary \& Calculations
Table 3 - AHU - 3 Summary \& Calculations

References

ANSI/ASHRAE, 2007, Standard 62.1 - 2007, Ventilation for Acceptable Indoor Air Quality. American Society of Heating, Refrigerating, and Air Conditioning Engineers, Inc., Atlanta, GA, 2007.
AHU-1

[^0]| ROOM \# | USE / NAME | Az | 62.1 class | occ Density | Rp | Ra | Pz | Rp*Pz | Ra*Az | $\mathrm{Vbz}=\mathrm{Voz}$ | Vpz | Zp | Vdz | Zd | Evz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 395 | Animal Housing | 180 | Univ. Lab | 25 | 10 | 0.18 | 5 | 45 | 32 | 77 | 500 | 0.1548 | 50 | 1.5480 | -0.3120 |
| 380, 386, 376 | Potting \& Storage Area | 832 | Univ. Lab | 25 | 10 | 0.18 | 21 | 208 | 150 | 358 | 1600 | 0.2236 | 800 | 0.4472 | 0.7888 |
| 371 suite | offices, student lounge | 1070 | Office Space | 5 | 5 | 0.06 | 5 | 27 | 64 | 91 | 950 | 0.0957 | 575 | 0.1582 | 1.0779 |
| 374, 372, 3C-8, 3C-7 | offices, corridors | 580 | Office Space | 5 | 5 | 0.06 | 3 | 15 | 35 | 49 | 625 | 0.0789 | 325 | 0.1517 | 1.0843 |
| 370 suite | Plant Bio Teaching Lab | 1200 | Classroom (9+) | 35 | 10 | 0.12 | 42 | 420 | 144 | 564 | 1625 | 0.3471 | 525 | 1.0743 | 0.1617 |
| 358, 360, 362 | Bio Labs \& Write-up | 1700 | Univ. Lab | 25 | 10 | 0.18 | 43 | 425 | 306 | 731 | 2260 | 0.3235 | 1060 | 0.6896 | 0.5464 |
| 364 | Biology Lounge | 560 | Classroom (9+) | 35 | 10 | 0.12 | 20 | 196 | 67 | 263 | 700 | 0.3760 | 350 | 0.7520 | 0.4840 |
| 350 | faculty office | 150 | Office Space | 5 | 5 | 0.06 | 1 | 4 | 9 | 13 | 150 | 0.0850 | 75 | 0.1700 | 1.0660 |
| 357, 355, 353, 349 | Bio Labs \& Write-up | 1800 | Univ. Lab | 25 | 10 | 0.18 | 45 | 450 | 324 | 774 | 2860 | 0.2706 | 1210 | 0.6397 | 0.5964 |
| 349, 341A | Cell/Molecular Bio Lab | 1280 | Univ. Lab | 25 | 10 | 0.18 | 32 | 320 | 230 | 550 | 2175 | 0.2531 | 700 | 0.7863 | 0.4497 |
| 341B | Equipment Room | 155 | Univ. Lab | 25 | 10 | 0.18 | 4 | 39 | 28 | 67 | 275 | 0.2424 | 150 | 0.4443 | 0.7917 |
| 3C-S, M352, M354 | corridors, elec. Telecom | 975 | corridors, elec, telecom | 0 | 0 | 0.06 | 0 | 0 | 59 | 59 | 800 | 0.0731 | 800 | 0.0731 | 1.1629 |
| 281 | Bio Seminar Room | 570 | Classroom (9+) | 35 | 10 | 0.12 | 20 | 200 | 68 | 268 | 900 | 0.2977 | 450 | 0.5953 | 0.6407 |
| 282 | Classroom | 960 | Classroom (9+) | 35 | 10 | 0.12 | 34 | 336 | 115 | 451 | 1400 | 0.3223 | 700 | 0.6446 | 0.5915 |
| 286 | Seminar Room | 570 | Classroom (9+) | 35 | 10 | 0.12 | 20 | 200 | 68 | 268 | 900 | 0.2977 | 450 | 0.5953 | 0.6407 |
| 284 | Study / Discussion | 250 | Classroom (9+) | 35 | 10 | 0.12 | 9 | 88 | 30 | 118 | 600 | 0.1958 | 600 | 0.1958 | 1.0402 |
| 270 | Psych Lab and Observ | 800 | Univ. Lab | 25 | 10 | 0.18 | 20 | 200 | 144 | 344 | 1350 | 0.2548 | 675 | 0.5096 | 0.7264 |
| 262 suite | Quant Psych Labs | 850 | Univ. Lab | 25 | 10 | 0.18 | 21 | 213 | 153 | 366 | 1550 | 0.2358 | 525 | 0.6962 | 0.5398 |
| 258 suite | Intro Psych Teaching Lab | 1350 | Classroom (9+) | 35 | 10 | 0.12 | 47 | 473 | 162 | 635 | 2100 | 0.3021 | 1050 | 0.6043 | 0.6317 |
| 266 suite | Breakout Session rooms | 650 | Classroom (9+) | 35 | 10 | 0.12 | 23 | 228 | 78 | 306 | 800 | 0.3819 | 400 | 0.7638 | 0.4723 |
| 250 | Bio Storage | 150 | Storage Rooms | 0 | 0 | 0.12 | 0 | 0 | 18 | 18 | 150 | 0.1200 | 75 | 0.2400 | 0.9960 |
| 280 | Loeb Gallery | 850 | Classroom (9+) | 35 | 10 | 0.12 | 30 | 298 | 102 | 400 | 1200 | 0.3329 | 600 | 0.6658 | 0.5702 |
| 271 suite | offices, student lounge | 1070 | Office Space | 5 | 5 | 0.06 | 5 | 27 | 64 | 91 | 1000 | 0.0910 | 500 | 0.1819 | 1.0541 |
| 257, 255, 253, 251 | Bio Labs \& Write-up | 1800 | Univ. Lab | 25 | 10 | 0.18 | 45 | 450 | 324 | 774 | 3800 | 0.2037 | 1325 | 0.5842 | 0.6519 |
| 249 | Salt Aquatics Suite | 750 | Univ. Lab | 25 | 10 | 0.18 | 19 | 188 | 135 | 323 | 500 | 0.6450 | 250 | 1.2900 | -0.0540 |
| 2C-S, M252, M254 | corridors, elec. Telecom | 1000 | corridors, elec, telecom | 0 | 0 | 0.06 | 0 | 0 | 60 | 60 | 1200 | 0.0500 | 1000 | 0.0600 | 1.1760 |
| 191 | Humanities Common Rm | 1200 | Classroom (9+) | 35 | 10 | 0.12 | 42 | 420 | 144 | 564 | 2150 | 0.2623 | 1075 | 0.5247 | 0.7114 |
| 172 suite | Faculty, Department Ofc. | 2800 | Office Space | 5 | 5 | 0.06 | 14 | 70 | 168 | 238 | 2250 | 0.1058 | 1125 | 0.2116 | 1.0245 |
| 170 | Phil Dept Lounge | 480 | Office Space | 5 | 5 | 0.06 | 2 | 12 | 29 | 41 | 300 | 0.1360 | 150 | 0.2720 | 0.9640 |
| 164 suite | Office and support | 775 | Office Space | 5 | 5 | 0.06 | 4 | 19 | 47 | 66 | 900 | 0.0732 | 490 | 0.1344 | 1.1016 |
| 166 | Tech Office | 100 | Office Space | 5 | 5 | 0.06 | 1 | 3 | 6 | 9 | 150 | 0.0567 | 75 | 0.1133 | 1.1227 |
| 162 | Control Room | 175 | Office Space | 5 | 5 | 0.06 | 1 | 4 | 11 | 15 | 200 | 0.0744 | 100 | 0.1488 | 1.0873 |
| 171 suite | interview/work offices | 2300 | Classroom (9+) | 35 | 10 | 0.12 | 81 | 805 | 276 | 1081 | 2800 | 0.3861 | 1400 | 0.7721 | 0.4639 |
| 151 suite | testing area | 850 | Classroom (9+) | 35 | 10 | 0.12 | 30 | 298 | 102 | 400 | 900 | 0.4439 | 450 | 0.8878 | 0.3482 |
| 150 | Café support | 150 | Break Room | 25 | 5 | 0.06 | 4 | 19 | 9 | 28 | 150 | 0.1850 | 75 | 0.3700 | 0.8660 |
| 149 | Lecture Hall | 1175 | Lecture-fixed | 150 | 7.5 | 0.06 | 176 | 1322 | 71 | 1392 | 2000 | 0.6962 | 1000 | 1.3924 | -0.1563 |
| 141 | Advanced Statistics | 375 | Classroom (9+) | 35 | 10 | 0.12 | 13 | 131 | 45 | 176 | 550 | 0.3205 | 275 | 0.6409 | 0.5951 |
| 100 | Atrium - S | 1150 | Main Entry Lobbies | 10 | 5 | 0.06 | 12 | 58 | 69 | 127 | 1800 | 0.0703 | 900 | 0.1406 | 1.0955 |
| 1C-S, M152/154, caterer prep, storage | corridors, elec. Telecom | 1900 | corridors, elec, telecom | 0 | 0 | 0.06 | 0 | 0 | 114 | 114 | 2800 | 0.0407 | 2800 | 0.0407 | 1.1953 |
| M069 | Bsmt Mech Room | 1750 | electrical equip rooms | 0 | 0 | 0.06 | 0 | 0 | 105 | 105 | 1600 | 0.0656 | 1600 | 0.0656 | 1.1704 |
| 67 | storage | 330 | Storage Rooms | 0 | 0 | 0.12 | 0 | 0 | 40 | 40 | 150 | 0.2640 | 75 | 0.5280 | 0.7080 |
| 063, 061 | M/W restrooms | 600 | Break Room | 25 | 5 | 0.06 | 15 | 75 | 36 | 111 | 700 | 0.1586 | 350 | 0.3171 | 0.9189 |
| 0C-S | corridors | 1120 | Corridors | 0 | 0 | 0.06 | 0 | 0 | 67 | 67 | 1000 | 0.0672 | 500 | 0.1344 | 1.1016 |
| M056 | elevator Mech room | 80 | elevator machine room | 0 | 0 | 0.12 | 0 | 0 | 10 | 10 | 1000 | 0.0096 | 100 | 0.0960 | 1.1400 |
| | | | | | | | | 8280 | 4317 | 12597 | 53370 | | | | |

ROOM \#	USE / NAME	Az	62.1 class	occ Density	Rp	Ra	Pz	Rp*Pz	Ra*Az	Vbz = Voz	Vpz	Zp
16	Animal Teaching Lab	700	Univ. Lab	25	10	0.18	18	175	126	301	1600	0.1881
14	Jan. Closet, Storage	115	Storage Rooms	0	0	0.12	0	0	14	14	175	0.0789
18	Cage Wash	475	Univ. Lab	25	10	0.18	12	119	86	204	1600	0.1277
28A, 28B	Animal Housing	190	Univ. Lab	25	10	0.18	5	48	34	82	450	0.1816
28C, 28D	Animal Housing	190	Univ. Lab	25	10	0.18	5	48	34	82	450	0.1816
28E, 28F	Animal Housing	190	Univ. Lab	25	10	0.18	5	48	34	82	450	0.1816
044A	Animal Housing	230	Univ. Lab	25	10	0.18	6	58	41	99	525	0.1884
44B	Animal Housing	250	Univ. Lab	25	10	0.18	6	63	45	108	600	0.1792
44 C	Observation \& Support	250	Univ. Lab	25	10	0.18	6	63	45	108	400	0.2688
44D	Animal Housing	310	Univ. Lab	25	10	0.18	8	78	56	133	700	0.1904
44 E	Animal Housing	320	Univ. Lab	25	10	0.18	8	80	58	138	750	0.1835
54	Showers/Lockers	210	Univ. Lab	25	10	0.18	5	53	38	90	325	0.2778
50	Kitchen	100	Univ. Lab	25	10	0.18	3	25	18	43	175	0.2457
52	Medical/Procedure	190	Univ. Lab	25	10	0.18	5	48	34	82	450	0.1816
46 suite	Animal Housing	360	Univ. Lab	25	10	0.18	9	90	65	155	850	0.1821
36	Animal Housing	90	Univ. Lab	25	10	0.18	2	23	16	39	225	0.1720
34	Wrire-up	100	Office Space	5	5	0.06	1	3	6	9	150	0.0567
32 C	Animal Housing	190	Univ. Lab	25	10	0.18	5	48	34	82	450	0.1816
32B	Animal Housing	190	Univ. Lab	25	10	0.18	5	48	34	82	450	0.1816
32A	Animal Housing	200	Univ. Lab	25	10	0.18	5	50	36	86	450	0.1911
30 suite	Animal Housing, halls	640	Univ. Lab	25	10	0.18	16	160	115	275	900	0.3058
24	Office	100	Office Space	5	5	0.06	1	3	6	9	175	0.0486
26	Feed/Bed Storage	110	Univ. Lab	25	10	0.18	3	28	20	47	225	0.2102
22	Quarantine	110	Univ. Lab	25	10	0.18	3	28	20	47	225	0.2102
$0 \mathrm{C}-\mathrm{V}$	Vivarium Corridors	900	corridors	0	0	0.06	0	0	54	54	450	0.1200
								1379	1069	2448	13200	

[^0]:

